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Abstract—This paper deals with the modelling of nonlinear
multiscale materials in magnetostatics by means of a finite
element computational homogenization method. The method
couples a macroscale problem with many microscale problems.
During the upscaling step, the homogenized magnetic perme-
ability and its derivative with respect to the magnetic field
are calculated from the microscale solution and transferred
to the macroscale. The downscaling step consists in imposing
proper boundary conditions for the microscale problems from
the macroscale solution. Results are validated by comparison with
those obtained with classical finite element brute force approach.

I. INTRODUCTION

Over the last few years, several multiscale computational
methods have been proposed to study multiscale materials,
mainly in the frame of mechanical, fluid dynamic and thermal
problems. Among many others, it is worth mentioning the
Multiscale Finite Element Methods (MsFEM) [1] and the Het-
erogeneous Multiscale Methods (HMM) [2], [3]. The former
construct adapted global basis functions for the macroscale
problem by solving microscale problems. The latter solve
the microscale problems for determining a homogenized or
average quantity of interest that is directly transfered to
the macroscale problem. Both approaches take advantage of
the separation of scales, with possibly different governing
equations for the considered scales. However, while the HMM
yields to a greatly reduced computational cost, MsFE methods
are often as expensive as a brute force technique. A very
popular HMM-type method is the so-called FE2 method that
applies FE to solve the micro and macro problems [4].

In this paper, we apply a FE computational method within
the HMM framework to a nonlinear multiscale magnetostatic
problem. The method couples problems at two different scales:
• the macroscale problem that accounts for the slowly

varying component of the full solution;
• microscale problems that fully resolve the material inho-

mogeneities at the smallest scale.
The macroscale solution serves to impose suitable boundary
conditions for the microscale problems. In turn, the solution
of these microscale problems allows to calculate the effec-
tive magnetic permeability and its derivative with respect to
the magnetic field (for Newton-Raphson iterations) for the
macroscale problem.

II. MAGNETOSTATIC PROBLEM

The magnetostatic problem in a bounded domain Ω = Ωs∪
ΩC

s ∈ R3 is defined by the following Maxwell equations and
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constitutive law [5]:

curlh(x) = j(x) , div b(x) = 0 , b(x) = µ(x, h(x))h(x) ,
(1 a-c)

with x the space position, h the magnetic field, b the mag-
netic flux density, j the electric current density and µ the
permeability. Domain Ωs contains the sources and ΩC

s denotes
its complement. Proper boundary conditions must also be
imposed.

We use the scalar potential formulation and decompose h
into a source term and a reaction term. Assuming that the
domain is simply connected, h(x) = hs(x)−gradφ(x) where
φ is the magnetic scalar potential. Then, the weak form of (1 b)
leads to [5]: Find φ(x) such that(
µ(x, h(x))·gradφ(x), gradφ′(x)

)
Ω
=
(
hs(x), gradφ′(x)

)
Ω
(2)

holds for all test functions φ′(x) in an appropriate function
space.

III. COMPUTATIONAL HOMOGENIZATION MODEL

In a multiscale material, rapid spatial variations of the
magnetic permeability induce rapid variations of the mag-
netic scalar potential φε(x). The exponent ε refers to the
ratio between the scale of the material and the scale of its
microstructures, hence it denotes quantities with rapid spatial
variations. Let us assume hs(x) = 0 and impose φε(x)
on some parts of the boundary, the magnetic field becomes
hε(x) = −gradφε(x) and the weak form (2) reads: Find
φε(x) such that(

µε(x, hε(x)) · gradφε(x), gradφ′ε(x)
)

Ω
= 0 (3)

is verified for all φ′ε(x) in a suitable basis function space.
Equation (3) can be solved in the whole domain using

e.g. finite element method. However this is very expensive
in terms of memory and computation time due to the need
of discretizing the unknown field at the smallest scale ε.
Finite element computational homogenization methods allow
to overcome this problem. The principle of the method is
explained in Fig. 1. A macroscale problem is defined on a
coarse mesh covering the entire domain and many microscale
problems are defined on small, finely meshed areas around
some points of interest of the macroscale mesh (e.g. numerical
quadrature points). In the following, the subscripts M and m
refer to macroscale and microscale quantities, respectively.

A. Downscaling
From (3), the weak equation to solve at the microscopic

level reads:(
µε(x, hε

m(x)) · gradφε
m(x), gradφ′εm(x)

)
Ωm

= 0 , (4)
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Fig. 1. Scale transitions between macroscale (left) and microscale (right)
problems. Downscaling (Macro to micro): obtaining proper boundary con-
ditions for the microscale problem from the macroscale solution. Upscaling
(micro to Macro): effective quantities for the macroscale problem calculated
from the microscale solution

where Ωm is the microdomain. This equation must be
completed by the boundary conditions obtained from the
macroscale solution as explained hereafter.

The microscale magnetic scalar potential φε
m can be ex-

pressed in terms of φM , the mean macroscale component with
slow variations, and φε

c, a correction term that accounts for the
rapid variations, i.e.

φε
m(x) = φM (x) + φε

c(x) . (5)

Applying the gradient operator to both sides of (5) and
integrating gives:

1
Vm

∫
Ωm

gradφε
m(x) dΩm =

1
Vm

∫
Ωm

gradφM (x) dΩm +
1
Vm

∫
Γm

nφε
c(x) dΓm (6)

where Vm and Γm are respectively the volume and the
boundary of the microdomain Ωm. Assuming that the average
magnetic field is conserved, we can write:

1
Vm

∫
Ωm

gradφε
m(x) dΩm =

1
Vm

∫
Ωm

gradφM (x)dΩm (7)

which implies that the magnetic field is consistent between the
macroscale and the microscale. Furthermore, it infers periodic
boundary conditions for the correction term φε

c. Note that the
surface integral in (6) vanishes.

B. Upscaling
If scale separation holds, the following nonlinear equation

governs the macroscale problem:(
µM (x, hM (x)) · gradφM (x), gradφ′M (x)

)
ΩM

= 0 . (8)

The effective magnetic permeability µM is calculated by
equalizing the magnetic co-energies at the microscale and the
macroscale:

1
Vm

∫
Ωm

hε
m(x) · µε

(
x, hε

m(x)
)
· hε

m(x)dΩm =

hM (x) · µM

(
x, hM (x)

)
· hM (x) . (9)

The left side of (9) can be calculated from the microscale
solution and hM is deduced from (7). We use the finite

element method to solve both the macroscale problem and
the microscale problems.

IV. APPLICATIONS

In order to validate the new computational homogenization
method we solve a one-dimensional problem and compare the
results to those obtained by the classical finite element method
with an extremely fine mesh. We adopt the following rapidly
varying permeability:

µε
(
x, hε

m(x)
)

=
µ0

[
1 + cos

(
2π x

ε

)]
|hε

m(x)|+ 0.5 exp
(

0.5−|hε
m(x)|

5

) . (10)

A zoom of the magnetic field on the microdomain defined on
the interval [0.225, 0.375] is depicted in Fig. 2.
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Fig. 2. Comparison of magnetic field obtained using different assumptions

The curves labeled “fine” correspond to the reference non-
linear and linear solutions, i.e. the macro problem is solved
on a very fine mesh that accounts for the variations of µε

in (10). The result of the proposed “computational” approach
is obtained when coupling the macro problem on a very coarse
mesh and micro problems on a fine mesh (one per e.g. each
integration point at the macro level) on a fine mesh. The local
magnetic field is shown to be very accurate at the microscale.

In the extended paper, we will apply the method to a non-
linear magnetostatic problem, the lamination stacks that can
be found in transformers or electric machines. A discussion
on the computational cost will be included as well.
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